
AP Computer Science
Strings

Credit: Slides are modified with permission from Barry Wittman at Elizabethtown College

This work is licensed under an Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

References & Objects

Strings are objects

● So far we have focused mainly on primitive data

types (int, double, char).

● First, we will look at some basic differences

between Strings and primitive data types.

● Strings are what we will start calling an object

data type.

Initializing a String

● To declare and assign a value to a primitive we

would do:
int num = 5;

● We can declare and assign a value to a String in

exactly the same way.

● However, there is another way to declare and

assign a value to a String.

String one = “Hello World!”;

String two = new String(“Hello World!”);

Initializing a String

int num = 5;

String one = “Hello World!”;

String two = new String(“Hello World!”);

num

5

one

123 Hello World!

two

124 Hello World!

123

124

Initializing a String

● For a String the identifier is called a reference

variable which stores a reference to a location

in memory where the String is located.

one

123 Hello World!

123

String

Reference

variable

Reference

References

● The best analogy I have heard of for the

reference/String relationship is your cell phone

number and you.

● Someone can “find” you and ask you to do

something by calling your cell phone.

Strings

Strings

● Strings are immutable – meaning you cannot

change the String (the object)

● You can however re-assign a new String to a

reference variable (the reference)

● You use indexes to access individual or groups

of characters in a String

H e l l o W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11

stringName.MethodName(arg1, arg2);

● Proper syntax for calling a String method gives

first the name of the String, a dot, the name of

the method, and then any arguments

Using String Methods

● String methods always return a new String

(remember Strings are immutable!)

● Remember to assign the method to a variable

Concatenating Strings

● You can concatenate or “add” two Strings

together using the + operator

String word1 = “We will play”;

String word2 = “ with Turtles next!”;

String word3 = word1 + word2;

System.out.println(word3);

Output

We will play with Turtles next!

length()

● The length() method returns the number of

characters in a String (including whitespace)

● Note the first index is 0

● This means the index of the last character and

the length are different

String word = “Hello”;

int wordLength = word.length();

System.out.println(wordLength);

Output

5

String wordTwo = “Today is a good day!”;

int wordTwoLength = wordTwo.length();

System.out.println(wordTwoLength);
Output

20

substring()

String word = “Hello World”;

String newWord = word.substring(6);

System.out.println(newWord);

Output

World

String word1 = “Today is a”;

String word2 = “ good day!”;

String word3 = word1 + word2;

int index = word2.length() + 1;

System.out.println(index);

out.println(word3.substring(index,15));

Output

11
good

● substring() returns a section of the String

● You can combine length() and substring()

charAt()

String wordTwo = “Today is a good day!”;

char charTwo = wordTwo.charAt(11);

System.out.println(charTwo);
Output

g

String word1 = “We will play”;

String word2 = “ with Turtles next!”;

String word3 = word1 + word2;

out.println(word3.charAt(word3.length()-1));

Output

!

● charAt() returns a character at a certain index

● How would you return the last char in a String?

indexOf()

String word = “Hello World”;

int loc = word.indexOf(‘o’);

System.out.println(loc);

Output

4

String wordTwo = “Hello World!”;

int locOne = wordTwo.lastIndexOf(‘o’);

System.out.println(locOne); Output

7

● indexOf() returns the index of a specified char

o It reads left to right

● lastIndexOf() does the same except reads from

right to left

indexOf()

String word1 = “We will play”;

String word2 = “ with Turtles next!”;

String word3 = word1 + word2;

System.out.println(word3.indexOf(‘f’));

Output

-1

● What happens when the char is not present in

the String?

● When this happens, the value of -1 is returned

to signify that the character is not in the String

compareTo()

String word = “Hello World”;

String newWord = “Hello World”;

System.out.println(word.compareTo(newWord));

Output

0

● compareTo() returns the difference in the

Strings based upon the ASCII character values

● If the Strings are the same, you receive 0

● If the first characters are the same, it continues

checking to the right until it finds a difference

● One nice trick to keep track of whether the

value returned is positive or negative is to

imagine a - sign above the compareTo()

compareTo()

String word1 = “hello World”;

String word2 = “Hello World”;

System.out.println(word1.compareTo(word2));

Output

32

String word3 = “Hello World”;

String word4 = “Hello world”;

System.out.println(word3.compareTo(word4));

Output

-32

● What is the output of these two sets of code?

equals()

String word = “Hello World”;

String newWord = “Hello World”;

System.out.println(word.equals(newWord));

Output

true

String word1 = “Hello World”;

String word2 = “hello World”;

System.out.println(word2.equals(word1));

Output

false

● equals() tests for equality of two Strings

● equals() compares the actual Strings

equals()

● This is distinctly different than = or as we will

later see ==

● == is actually comparing the reference

String word1 = "Hello World";

String newWord1;

newWord1 = new String("Hello World");

System.out.println(word1==newWord1);

Output

false

String word = "Hello World";

String newWord = "Hello World";

System.out.println(word==newWord);

Output

true

Returning non-String Values

● For the CodingBat.com labs today you will need

to complete some return methods.

● The return type will be String, but many of you

will want to include other values.

● Here is how you can fix this problem:

public String add(String a, String b)

{

 char one = a.charAt(1);

 char two = b.charAt(1);

 return “” + one + two; //adding the

 //empty string solves this problem

}

String Methods

Method Description Returns

length() Returns the length of this string (number of

characters).

int

substring(int from) Returns a section of the string starting at the location

+ 1

String

substring(int from, int to) Returns a section of the string starting at the first

location + 1 and including the second location

String

charAt(int index) Returns the char value at the specified index. char

indexOf(String str) Returns the index within this string of the first

occurrence of the specified substring.

int

lastIndexOf(String str) Returns the index within this string of the last

occurrence of the specified substring.

int

compareTo(String other) Compares two strings lexicographically. difference

in ASCII

values

equals(String other) Compares this string to another String. true/false

Here is the entire String library with all methods available.

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

