
AP Computer Science
Recursion & The Stack

Recursion

● Recursion occurs when a method calls itself.
● What is the output of the method below?
● Will it ever end?

public void run(int x) {
 System.out.println(x);
 run(x + 1)
}

run(1); Output

1
2
3
...

Base Case

● What is different about these methods?

public void run(int x) {
 System.out.println(x);
 if (x < 3)
 run(x + 1);
}

public void run(int x) {
 System.out.println(x);
 run(x + 1)
}

Base Case

● A recursive method must have a stop condition,
i.e. "base case"

● Recursive calls will continue until the stop
condition is met

public void run(int x) {
 System.out.println(x);
 if (x < 3) // base case
 run(x + 1);
}

run(1);
Output

1
2
3

Recursion Rules

● Base Case
● Always have at least one case that can be
solved without using recursion

● Make Progress
● Any recursive call must progress toward a
base case.

● A recursive solution solves a small part of the
problem and leaves the rest of the problem in
the same form as the original

Tracing Recursion

● What's different in this example?
● Will the output change?

public void run(int x) {
 if (x < 3) // base case
 run(x + 1);
 System.out.println(x);
}

run(1);
Output

3
2
1

The Stack

Activation Records

● When we call a method, e.g. run(1), all
relevant (the 1 and where to return once
run(1) is over) is placed in an activation record

● The activation record is pushed onto the
program stack
● Think of a stack as a deck of cards, you can
only access the top card or "push" more on
top of it

Activation Records

public void run(int x) {
 System.out.println(x);
 if (x < 3) // base case
 run(x + 1);
}

run(1);

● Consider how the activation records are pushed
on the stack for this method call

● Once the function is over, it's removed from the
stack.

run(1);

run(1+1);

"1"

"2"

run(2+1); "3"

The Stack Output

Activation Records

public void run(int x) {
 if (x < 3) // base case
 run(x + 1);
 System.out.println(x);
}

run(1);

● Notice the difference in the stack modification
versus output!

run(1);

run(1+1);

"1"

"2"

run(2+1); "3"

The Stack Output

Evaluating Recursion

● m(3) = 3 * m(2)
● m(2) = 3 * m(1)
● m(1) = 3 * m(0)
● m(0) = 1

public int mystery(int n) {
 if (n == 0)
 return 1;
 else
 return 3 * mystery(n-1);
}

Returns

27

● What is returned by mystery(3)?

Evaluating Recursion

● So what does mystery compute?

public int mystery(int n) {
 if (n == 0)
 return 1;
 else
 return 3 * mystery(n-1);
}

Evaluating Recursion

● b(5, 6) = b(5, 4) + 5
● b(5, 4) = b(5, 2) + 5
● b(5, 2) = b(5, 0) + 5
● b(5, 0) = 5

int boogie(int x, int y) {
 if(y < 2)
 return x;
 else
 return boogie(x,y-2) + x;
}

Returns

20

● What is returned by boogie(5, 6)?

Evaluating Recursion

● f(3) = 3 + f(2) + f(1)
● f(2) = 2 + f(1) + f(0)
● f(1) = 1 + f(0) + f(-1)
● f(0) = 1, f(-1) = 1

int fun(int x){
 if(x < 1)
 return 1;
 else
 return x+fun(x-1)+fun(x-2);
}

Returns

12

● What is returned by fun(3)?

A Reminder

● Recursion is just another tool to use
● It is not a good tool for all problems

● We will implement several algorithms and
methods where a looping solution would work
just fine

● You must realize when it's time to use recursion!

Additional Resources

Additional Resources

● Here are some additional resources:
● Recursion Explained with the Flood Fill Algorithm
● Flood Fill (Wikipedia)
● Visualizing Recursion
● Recursive Methods and Problem Solving
● Recursion (Online Textbook)
● Flood Fill (Example shown in class)

http://inventwithpython.com/blog/2011/08/11/recursion-explained-with-the-flood-fill-algorithm-and-zombies-and-cats/comment-page-1/
http://en.wikipedia.org/wiki/Flood_fill
http://interactivepython.org/runestone/static/thinkcspy/Recursion/graphical.html
http://www.cs.utep.edu/vladik/cs2401.10a/Ch_14_Recursion.pdf
http://introcs.cs.princeton.edu/java/23recursion/
https://drive.google.com/file/d/0BxA9ongdPPJeQ3cwV3oxaFVFRVk/edit?usp=sharing

	AP Computer Science
	Recursion
	Base Case
	Base Case
	Recursion Rules
	Tracing Recursion
	The Stack
	Activation Records
	Activation Records
	Activation Records
	Evaluating Recursion
	Evaluating Recursion
	Evaluating Recursion
	Evaluating Recursion
	A Reminder
	Additional Resources
	Additional Resources

