
AP Computer Science
Data Types & Variables

Credit: Slides are modified with permission from Barry Wittman at Elizabethtown College

This work is licensed under an Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Built-in Types of Data

Built-in types

● Today we are going to focus on four basic types

● These are:

o int For whole numbers

o double For rational numbers

o char For single characters

o String For words

● String is a little different from the rest, but we

will talk about this later

The int Type

The int type

● The int type is used to store integers (positive

and negative whole numbers and zero)

● Examples:

● 54

● -893992

● 0

Overflow and underflow

● What happens when you add 100 to the
maximum int value 2147483647?

● You do not get 2147483747

● Instead, it becomes a very negative number: -

2147483549

● This phenomenon is called overflow

● The opposite thing happens if you have a very

negative number and you subtract a number

that makes it too negative

● This phenomenon is called underflow

Variables

● Think of a variable as a “box” you can put

values into

● The name of a variable is an identifier
● We can declare a variable of type int with

identifier i using the following line of code:

int i;

Variable Naming Conventions

● For variables, the first character is alphabetic

and lowercase

● The first character of each following word should

be capitalized

● An identifier must not already be in use in this

part of the program

● The same rules for classes apply to variables

● It should be meaningful!

Assignment into an int

● By default, the declaration of an int puts the

literal value 0 inside the box

● Remember, you must declare a variable before

using it

int i;

0

i

Changing the value of a

variable

● Java variables are not like variables in math

which have a fixed (but unknown) value

● Instead, a Java variable can be changed by a

line of code
● We use the assignment operator (=) to change

the value of a variable as follows:

int i;

i = 5;

Changing the value of a

variable

● This line of code stores 5 into i

● Think of the = operator as an arrow pointing left

● Let’s see this happen

0

i

i = 5;

5 5

Declaration vs Assignment

● Note the differences between declaring, assigning,

and declaring and assigning

● Declaring - creates new variable with default value

● Assigning - changes value of existing variable

● Declaring and Assigning - creates new variable and

assigns value

int x;

x = 10;

int x = 10;

The double Type

The double type

● The double type allows you to represent

numbers with a fractional part
● Declaration of a double variable is like an int

variable:

double x;

Storage for a double

● This line of code creates a box named x

designed only to hold doubles

double x;

x

Assignment for a double

● This line of code stores 3.14159 into x

● Remember that the = operator is like an arrow

pointing left

x = 3.14159;

x

3.14159 3.14159

The char Type

The char type

● Sometimes you need to store a single character
● This is what the char type is for

● The char type only allows you to store a single

character like '$' or 'q'

● You declare a char like:

char c;

Storage for a char

● This line of code creates a box named c

designed only to hold chars

● It is used to store characters from most of the

different scripts in the world

char c;

c

Assignment for a char

● This line of code stores the letter 'a' into into a

variable named c

● We must use the single quotes so Java knows
we are talking about the character 'a' and not

a variable named a

c = 'a';

'a'

c

'a'

ASCII Characters

● ASCII is a standard used for encoding

characters

● You should be able to calculate ASCII values

o '0' - 48

o 'A' - 65

o 'a' - 97

● Knowing these 3 will allow you to figure out any

other ASCII character

You can find the entire list of ASCII Characters here

http://www.asciitable.com/
http://www.asciitable.com/

ASCII Characters

● You can do calculations on characters

char one = 'a' + 1;

System.out.println(one);

char two = 'A' + 5;

System.out.println(two);

Output

b

Output

F

The String Type

The String type

● The String type is different from the other

types in several ways

● The important thing for you to focus on now is it
can hold a large number of chars, not a single

value
● A String literal is what we used in the Hello

World program

String word;

Storage for a String

● This line of code creates a box named word

designed only to hold Strings

● It is used to store text of any length from most of

the different scripts in the world

String word;

word

Assignment for a String

● This line of code stores the String "Mad

flavor" into word

● We must use the double quotes so Java knows
we are talking about the text "Mad flavor"

word = "Mad flavor";

word

"Mad flavor" "Mad flavor"

Summary of types

Type Kind of values Sample Literals

int Integers
-5

0

900031

double
Floating-point

Numbers

3.14

-0.6

6.02e23

char Single characters
'A'

'Z'

'&'

String
Sequences of

characters

"If you dis Dr. Dre"

"10 Sequipedalians"

constants

Constants

● Often in a program you want to give a name to a

constant value.

● For example you might have a tax rate of 0.045

for durable goods and a tax rate of 0.038 for

non-durable goods.

● These are constants, because their value is not

going to change during a run of the program.

● The reserved word final tells the compiler the

value will not change.

final static double DURABLE = 0.045;

final static double NONDURABLE = 0.038;

Operations on ints

The + Operator for int

● Use the + operator to add two ints together

int a;

int b;

a = 5 + 6; // a contains 11

b = a + 3; // b contains 14

a + b; // not allowed, does nothing

a = a + 1; // a contains 12, and b?

Shortcuts

● Some expressions are used so often, Java

gives us a short cut
● x = x + y; can be written x += y;

● x = x + 1; can be written x++;

int x;

x = 6; // x contains 6

x += 4; // x contains 10

x++; // x contains 11

The - Operator for int

● Exactly like + except performs subtraction

int a;

int b;

a = 5 - 6; // a contains -1

b = 3 - a; // b contains 4

a -= 10; // shortcut for a = a – 10;

a--; // shortcut for a = a – 1;

The * Operator for int

● The * operator performs multiplication

int a;

int b;

a = 5 * 6; // a contains 30

b = a * 3; // b contains 90

a *= 2; // shortcut for a = a * 2;

The / Operator for int

● The / operator performs integer division

● Not the same as regular division

● The fractional part is dropped, not rounded

int a;

int b;

a = 3; // a contains 3

b = a / 2; // b contains 1

a /= 2; // shortcut for a = a / 2;

The % Operator for int

● The % operator is the mod operator

● It finds the remainder after division

● This operator is a good way to find out if a

number is even or odd

int a;

int b;

a = 8; // a contains 8

b = a % 5; // b contains 3

a %= 2; // shortcut for a = a % 2;

Operations on doubles

The + Operator for double

● Exactly the same as + for int, except now you

can have fractional parts

double a;

double b;

a = 3.14159; // a contains 3.14159

b = a + 2.1; // b contains 5.24159

a += 1.6; // shortcut for a = a + 1.6;

a++; // shortcut for a = a + 1.0;

The – and * Operator for double

● No surprises here

● They do subtraction and multiplication

double a;

double b;

a = 3.14159; // a contains 3.14159

b = a - 2.1; // b contains 1.04159

a = b * 0.5; // a contains 0.520795

The / Operator for double

● Unlike int, this division does have fractional

parts

● Can you explain this mystery?

double a;

double b;

a = 3; // a contains 3.0

b = a / 2; // b contains 1.5

b = 3 / 2; // b contains 1.0

Complex expressions

● How complex can expressions get?

int a = 31;

int b = 16;

int c = 1;

int d = 2;

a = b + c * d – a / b / d;

● What is the value of a?

● 18!

Complex expressions

● Order of operations holds like in math

int a = 31;

int b = 16;

int c = 1;

int d = 2;

a = (((b + c) * d) – a / b) / d;

● You can use parentheses to clarify or change

the precedence
● Now a is 16

Operator Precedence

Operators Precedence

postfix expr++ expr--

multiplicative * / %

additive + -

assignment = += -= *= /= %=

This is a sample of the entire list of operator precedence.

You can find the entire list located HERE.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Casting

● You cannot directly store a double value into

an int variable

 int a = 2.6; // fails!

int a = (int)2.6; // succeeds! (a = 2)

●However, you can cast the double value to

convert it into an int

●Casting tells the compiler you want the loss of

precision to happen
●You can always store an int into a double

Rounding

● In Java, the conversion of a double into an int

does not use rounding

● As in the case of integer division, the value is

always rounded down

● You can think of this as using the floor function

from math

● If you want to round normally, you can simply

add 0.5 before the cast

double x = 2.6;

int a = (int)(x + 0.5); // rounds

